ADAS Subroutine cxsqef

```
subroutine cxsqef( iunit , dsname , ibsel ,
                        ngeff , epro , ttar ,
                              , em2 \, , iord
     &
                         em1
     &
                        ti
                              , densi , zeff , bmag
                        nener , ener , qener
     &
                         csymb , czion , cwavel , cdonor , crecvr ,
     &
                         ctrans , cfile , ctype , cindm ,
     &
                         qeff , ircode
     &
                      )
                                 ______
С
C *************** FORTRAN77 SUBROUTINE : CXSQEF *************
C
 PURPOSE: Subroutine to evaluate Maxwell averaged effective rate
С
            coefficients for charge exchange/Stark studies.
С
С
С
             The source data is effective coefficients in the
             collisional/radiative sense or effective emission
С
С
             coefficients for photon emission but before averaging
С
             over ion/atom speed distribution functions.
С
С
            The function also returns the raw eff. coefft. data for
С
            verification and graphing purposes.
С
С
             The effective rate coefficient appropriate to one of
С
            the particles being in a monoenergetic beam and the other
С
            belonging to a Maxwell distribution may be returned.
С
            The target and projectile roles may be reversed. Arbitrary
С
             relative speeds are allowed.
С
C SUBROUTINE:
С
C input : (i*4) iunit = unit number on which ionatom file is opened
C input : (c) dsname = full name of data set to be opened and read
C input : (i*4) ibsel = selector for particular rate coefft.
С
 input: (i*4) ngeff = number of rates to be evaluated (when ttar>0)
С
                          a 1d array of plasma/beam conditions are
С
С
                          evaluated to give a vector of rates. at
С
                          the moment, epro, ttar, ti, densi, zeff &
                          bmag are allowed to vary along the vector.
С
 input : (r*8) epro
                        = incident particle energy (ev/amu)
С
C input : (r*8) ttar
                        = maxwell temperature of target particles (ev)
С
                          if (ttar.le.0) then rates for t=0 are
С
                          returned
C input : (r*8) em1 = atomic mass number of first particle C input : (r*8) em2 = atomic mass number of second particle
C input : (i*4) iord = 1 for 1st particle incident and monoenergetic
                        = 2 for 2nd particle incident and monoenergetic
С
C input : (r*8) ti = plasma ion temperature (ev)
C input : (r*8) densi = plasma ion density (cm-3)
C input : (r*8) zeff = plasma z effective
```

```
C input : (r*8) bmag = plasma magnetic field (tesla)
С
C output: (r*8) qeff = rate coefficient (cm3 sec-1)
C output: (i*4) nener = number of source data values
C output: (r*8) ener(i) = set of energies (ev/amu) for
                        selected source data
С
C output: (r*8) qener(i) = rate coeffts.(cm**3 sec-1) for
С
                        selected source data
C output: (c*2) csymb = element symbol
C output: (c*3) czion = emitting ion charge
C output: (c*8) cwavel = wavelength (A)
C output: (c*6) cdonor = donor neutral atom
C output: (c*5) crecvr = receiver nucleus
C output: (c*7) ctrans = transition
C output: (c*10) cfile = specific ion file source
C output: (c*2) ctype = type of emissivity
C output: (c*3) cindm = emissivity index
C output: (i*4) ircode = return code from subroutine:
                         0 \Rightarrow normal completion - no error detected
С
С
                         1 => error opening requested data set
С
                              exist - data set not connected
С
                         3 => the selected data-block 'ibsel' is out
                              of range or does not exist.
С
С
С
C ROUTINES:
          ROUTINE SOURCE BRIEF DESCRIPTION
С
           ______
С
          xxdata_12 ADAS reads values from 'ionatom' dataset
c3corr ADAS calculates scaled plasma parameter
c3alrs ADAS calculates rate coefficient
С
С
С
С
C AUTHOR: C. J. WHITEHEAD, UNIVERSITY OF STRATHCLYDE
С
C DATE: 25/11/94
С
C UPDATE: 19/12/94 HP SUMMERS - TIDIED UP FORMATTING
           03/01/95 HP SUMMERS - CORRECTED THERMAL AVERAGED RATE
С
                                 COEFFICIENT BY INTRODUCING OAA ARRAY
С
С
C UPDATE: 11/01/95 PE BRIDEN - CHANGED DSNAME FROM C*30 TO C*44
                                TO AGREE WITH THAT IN C2FILE.
С
С
                               - INITIALISE NBSEL AS ZERO.
С
C UPDATE: 03/05/95 PE BRIDEN - C3DATA CHANGED TO C3DATAO AS CURRENT
                                 VERSION OF SQEF NEEDS TTO BE UPDATED
С
С
                                 TO USE THE NEW VERSION OF C3DATA.
С
C UPDATE: 15/05/95 Tim Hammond - UNIX PORT
                                Put under SCCS control
C-----
С
C Copied from ...adas3xx/adas303/sqef.for, renamed and relocated as
```

```
C ...adas3xx/adaslib/cxsqef.for.
С
C VERSION : 1.1
C DATE : 15-11-2002
C MODIFIED : Lorne Horton
             - First version
С
С
              - Switched to ADAS-standard C3DATA.
С
               This is primarily a change to requiring the full
С
               input file name as input.
С
             - Increased NSTORE to 150 - consistent with ADAS303
             - Added loop to allow multiple evaluations per call.
С
С
               This means changing from a function to a
С
               subroutine
С
             - Removed IPASS. Routine now re-reads data sets only
С
               when theinput name has changed.
С
             - Added SAVE statement
C
С
C VERSION : 1.2
C DATE : 02-12-2004
C MODIFIED : Martin O'Mullane
            - Replace c3data with xxdata_12.
С
             - Place into central ADAS.
С
С
C VERSION : 1.3
C DATE : 17-05-2007
C MODIFIED : Allan Whiteford
С
             - Updated comments as part of subroutine documentation
С
               procedure.
C
C VERSION: 1.4
C DATE : 05-06-2007
C MODIFIED : Martin O'Mullane
C
            - New version of xxdata_12 with extra outputs.
С
C-----
C-----
     CHARACTER*6
                     CDONOR
     CHARACTER*10
                     CFILE
     CHARACTER*3
                     CINDM
                     CRECVR
     CHARACTER*5
     CHARACTER*2
                     CSYMB
                     CTRANS
     CHARACTER*7
                     CTYPE
     CHARACTER*2
                     CWAVEL
     CHARACTER*8
                     CZION
     CHARACTER*2
     CHARACTER*132
                    DSNAME
                      IBSEL,
                                        IRCODE, IUNIT
     INTEGER
                                 IORD,
     INTEGER
                                NQEFF
                     NENER,
                     BMAG(NQEFF), DENSI(NQEFF),
     REAL*8
                                                       EM1
     REAL*8
                     EM2, ENER (MENER), EPRO (NQEFF)
                     QEFF (NQEFF), QENER (MENER, NQEFF)
     REAL*8
     REAL*8
                      TI (NQEFF), TTAR (NQEFF), ZEFF (NQEFF)
```