ADAS Subroutine start7

SUBROUTINE START7(IUTMP, IUPS1, IUPS2, STITLE, DSLPATH,

NBENG, NTEMP, NDENS, lbndl, lproj)

IMPLICIT REAL*8(A-H, O-Z)

C									
С									
С	*****	** FORTRAN	77 ROUTINE : START7.F ********						
С									
С	PURPOSE	: CALCULAT	ION OF THE RESOLVED-NL POPULATION						
С		STRUCTURI	E.						
С									
С	NOTE	: THE RELE	VANT QUANTUM NUMBERS ASSOCIATED WITH						
С		THE POPU	THE POPULATION STRUCTURE CALCULATION ARE						
С		STORED II	STORED IN INTEGER ARRAYS WERE EACH ELEMENT						
С		IS 4 BYT	IS 4 BYTES. THE FIRST 10 BITS OF THE 4 BYTE						
С		INTEGER 1	INTEGER ELEMENT OF THE ARRAY IS USED TO						
С		STORE THI	STORE THE TOTAL ANGULAR MOMENTUM QUANTUM						
С		NUMBER, L	NUMBER, L. THE NEXT TEN BITS IS USED TO STORE						
С		THE ORBITAL ANGULAR MOMENTUM QUANTUM							
С	NUMBER, 1. THE LAST 12 BITS ARE USED TO STORE								
С	THE PRINCIPAL QUANTUM NUMBER, N.								
С	~ · · · · · · · · · · · · · · · · · · ·								
С	<								
С	<								
С	<n> <l> </l></n>								
С									
С		[N L							
С									
С		BIT OPERATORS ARE THEN EMPLOYED TO							
С		INTEROGA	INTEROGATE ARRAYS, E.G IAND, ISHFR,						
С		USING HE	USING HEXIDECIMAL MASKS.						
С									
С									
С	INPUT	:							
С									
С	(CHR)	TITLE()	: NAME OF THE NEUTRAL BEAM SPECIES.						
С	(I * 4)	MN	:						
С	(R*8)	RX3	:						
С	(R*8)	DPT	:						
С	(R*8)	EHCT	: CRITICAL ENERGY ?.						
С	(I * 4)	NHCT	: CRITICAL PRINCIPAL QUANTUM						
С			NUMBER ?.						
С	(I * 4)	LHCT	: CRITICAL ORBITAL QUANTUM						
С			NUMBER ?.						
С	(I * 4)	NIP	: RANGE OF DELTA N FOR IMPACT						
С	•		PARAMETER XSECTS. (LE.4)						
С	(I * 4)	NEX	:						
С	(I * 4)	IPRT	:						
С	(I * 4)	NDEL	:						
С	(I * 4)	INTD	: ORDER OF MAXWELL QUADRATURE						
С	,		FOR XSECTS. (LE.3)						
С	(I * 4)	IPRS	: 0 DEFAULT TO VAN REGEMORTER XSECTS.						
С			BEYOND NIP RANGE						

C C			1 USE PERCIVAL-RICHARDS XSECTS. BEYOND NIP RANGE
C C	(I*4)		: 0 NO SPECIAL LOW LEVEL DATA ACCESSED. 1 SPECIAL LOW LEVEL DATA ACCESSED.
C C C	(I * 4)	IONIP	: 0 NO ION IMPACT COLLISIONS INCLUDED. 1 ION IMPACT EXCITATION AND IONISATION INCLUDED.
C C	(I * 4)	NIONIP	: RANGE OF DELTA N FOR ION IMPACT EXCITATION XSECTS.
C C C	(I * 4)	ILPRS	: 0 DEFAULT TO VAINSHTEIN ION IMPACT EXCITATION XSECTS. 1 USE LODGE-PERCIVAL-RICHARDS ION IMPACT EXCITATION XSECTS.
C C C C C C C C	(I*4)	IVDISP	: 0 ION IMPACT AT THERMAL MAXWELLIAN ENERGIES 1 ION IMPACT AT DISPLACED THERMAL ENERGIES ACCORDING TO THE NEUTRAL BEAM ENERGY PARAMETER. IF (IVDISP=0 THEN SPECIAL LOW LEVEL DATA FOR ION IMPACT IS NOT SUBSTITUTED - ONLY VAINSHTEIN AND LODGE ET AL. OPTIONS ARE OPEN. ELECTRON IMPACT DATA SUBSTITUTION DOES OCCUR.
			: EFFECTIVE CHARGE OF THE PLASMA. : CRITICAL TRANSITION ENERGY (RYDBERGS) USED IN THE NEARLY DEGENERATE LEVEL TREATMENT. IF DE<=DEDEG THEN ASSUME ZERO A-VALUE AND NO SUPPLEMENTARY DATA. IF DE> DEDEG THEN ASSUME A-VALUE CALCULABLE AND SEARCH FOR SUPPLEMENTARY DATA. N.B. APPLIES TO DELTA N TRANSITIONS ONLY.
C C C	(I * 4)	NL1	: PRINCIPAL QUANTUM NUMBER FROM WHICH THE RESOLVED-NL POPULATION STRUCTURE CALCULATION STARTS FROM
C C C C	(I*4)		: PRINCIPAL QUANTUM NUMBER WHICH MARKS THE END OF THE RESOLVED-NL TREATMENT WITHIN THE POPULATION STRUCTURE CALCULATION AND INDICATES THE START OF THE BUNDLED-N APPROXIMATION.
C C	(I*4)		: UPPER PRINCIPAL QUANTUM NUMBER OF THE BUNDLED-N APPROXIMATION.
С	(R*8)		: NUCLEAR CHARGE OF BEAM ATOM ?.
С	(R*8)		: ION CHARGE+1 OF BEAM ION ?.
С	(R*8)	ALF	: ADJUSTABLE PARAMETER ASSOCIATED
С			WITH THE MODIFIED POTENTIAL USED
С			WHEN SOLVING THE RADIAL WAVE
С			EQUATION.

С	(R*8)	AMSZ0	:				
С	(R*8)	AMSHYD	:				
С	(I * 4)	LP	:				
С	(I * 4)						
C	,	-					
C							
C	OUTPUT	:					
	001101	•					
С		(D : 0)		2			
С		(R*8)	E I (C			
C	G=11=5.7.7						
С	GENERAL	:					
С							
С	(I * 4)	NLREP()	: 7	ARRAY CONTAINING REPRESENTATIVE			
С			-	LEVELS.			
С	(R*8)	ENL()	:]	EFFECTIVE PRINCIPAL QUANTUM			
С]	NUMBER.			
С	(R*8)	ENL2()	:]	RECIPROCAL OF THE EFFECTIVE PRINCIPAL			
С			(QUANTUM NUMBER SQUARED.			
С	(I * 4)	KPF()	: 7	ARRAY CONTAINING THE QUANTUM NUMBERS,			
С]	N,1,L FROM NMIN TO NMAX, IN ORDER			
С				OF DECREASING BINDING ENERGY. SEE			
C				NOTE AT THE TOP OF PROGRAM.			
C	(I * 4)	KPB()		ARRAY CONTAINING THE INDEX OF THE			
C	(± ~ 1)	111 D ()		CORRESPONDING LEVEL IN KPF().			
C	(R*8)	EGY		IONISATION POTENTIAL (RYDBERGS).			
C				COUNTER TO REFERENCE REPRESENTATIVE			
	(I * 4)	IV					
С	(T . 4)	т		LEVELS.			
C	(I * 4)			GENERAL COUNTER.			
С	(R*8)			EFFECTIVE PRINCIPAL QUANTUM NUMBER.			
С	(R*8)	E		RECIPROCAL OF THE EFFECTIVE PRINCIPAL			
С				QUANTUM NUMBER SQUARED.			
С	(R*8)	EXE		VARIABLE USED TO ASSIGN THE VALUE			
С			(OF EXP(I/k*Te).			
С	(R*8)	EXS	: '	VARIABLE USED TO ASSIGN THE VALUE			
С			(OF EXP(I/k*TS)			
С	$(I \star 4)$	K	: (GENERAL COUNTER.			
С	(R*8)	C1()	: (COEFFICIENT OF THE QUANTUM DEFECT			
С]	EXPANSION.			
С	(R*8)	C2()	: (COEFFICIENT OF THE QUANTUM DEFECT			
С]	EXPANSION.			
С	(R*8)	C3()	: (COEFFICIENT OF THE QUANTUM DEFECT			
С				EXPANSION.			
C							
C							
C							
C							
C							
C	ם ∩וות ד אוה	C •					
	ROUTINE	υ .					
C		DOUTTNE		COLIDCE DRIFT DECORTORION			
С		KOUTINE		SOURCE BRIEF DESCRIPTION			
С		1					
С		POLLHET		ADAS OBTAINS FUNDAMENTAL DATA			
С				FROM APPROPRIATE DATABASES.			

С		OVLP	ADAS	????????????????????????	
С		SETUP3	ADAS	????????????????????????	
С		SPIJ	ADAS		
C		CCNST7	ADAS		
_		CCNSI/	ADAS		
С				CONSTRUCT THE COLLISIONAL-	
С				RADIATIVE MATRIX.	
С		CCNSE4	ADAS	APPLIES MATRIX CONDENSATION	
С				SCHEME TO ARRAYS USED TO	
С				ASSEMBLE THE COLLISIONAL-	
С				RADIATIVE MATRIX.	
С		HYSCL	ADAS	????????????????????????	
С		111001	112110		
С	HT CECONY			, II D GINAMEDO	
С	HISTORY	: ORIGINAL	TI MKILLEN BI	H.P.SUMMERS.	
С					
С	NOTE	: THE RESC	LVED-NL CALCU	JLATION WAS STRUCTURED	
С		IN SUCH	A MANNER THAT	THE CALCULATION WAS	
С		PERFORME	D IN TWO STAG	GES. THIS TWO STAGE	
С		PROCCESS	HAS BEEN REM	MOVED. CUBIC SPLINE	
С		INTERPLO	ATION IN L. T	THE DIMENSIONALITIES	
С				ARE AS FOLLOWS :	
С		1 011 21101	01111 0101211		
С		MIIMDED C	F LEVELS <100	00	
C				QUANTUM LEVELS<300.	
С				RINCIPAL QUANTUM LEVELS<40.	
С		NUMBER C	F RESOLVED LE	:VELS <800	
С		NUMBER C	F RESOLVED RE	EPR.PRINC.QUANTUM LEVELS<11.	
С		NUMBER C	F REPRESENTAT	TIVE LEVELS<80.	
С		NUMBER C	F PRINCIPAL Ç	QUANTUM REPRESENTATIVE LEVELS<	30.
С					
С					
С	CONTACT	: HARVEY A	NDERSON		
С		UNIVERSI	TY OF STRATHO	CLYDE	
С			@PHYS.STRATH.		
С		11112 2110 011			
C	D M TC	: 2/2/98			
C	DAIL	• 2/2/30			
	NOTE :				
С	NOIE:		MARDIN TO DA	NARD HO HUR DOUBLING BINITAUS R	
С				SSED TO THE ROUTINE FINISH5.F	
С				N STREAM 12. IDEALLY THE VARIBI	_ES
С		SHOULD B	BE PASSED DIRE	ECTLY TO THE ROUTINE.	
С					
С					
С	MODIFIE)			
С					
С	VERSION:	1.2		DATE: 21-10)-99
С	MODIFIED: RICH	HARD MARTIN	Ī		
С		CHANGED HE	XADECIMAL CON	ISTANTS TO Z'FFF00000' FORM.	
С					
_	VERSION : 1.3				
	MODIFIED: Mart	in O'Mulla	ne		
	DATE : 08-1		9		
C			gamaf() from	200 to 500	
C	VICE	or illiav III	gamar () IIOM	200 00 500.	

```
С
C VERSION : 1.4
C DATE : 18-11-2004
C MODIFIED: Martin O'Mullane
            - Align with Harvey Anderson's last version.
С
С
             - Add lproj if projection output is requested.
С
             - Add lbndl if adf36 output file is requested.
             - The dsnps1 variable is replaced by iups2 in the
С
С
               parameter list.
С
C VERSION: 1.5
C DATE : 16-05-07
C MODIFIED: Allan Whiteford
С
             - Moved parameter statement to below comment block
С
               as part of subroutine documentation procedure.
С
      CHARACTER*80 DSLPATH, STITLE
INTEGER IUPS1, IUPS2, IUTMP, NBENG
INTEGER NDENS, NTEMP
LOGICAL LBNDL, LPROJ
```